For an OLAP DBMS, two ends are very important:

  • How users can conveniently connect - this is the entry end

    • Besides its own client, ClickHouse provides MySQL/PG/GRPC/HTTP access methods
  • How data can be conveniently mounted - this is the data source end

    • Besides its own engines, ClickHouse can mount external data sources like MySQL/Kafka

This way, internal and external connectivity is achieved, more friends means more paths, realizing “data”-level orchestration capabilities.

Today we’re talking about the entry end’s MySQL protocol, also the first good friend in this ClickHouse series. Users can directly connect to ClickHouse through MySQL clients or related drivers to perform data read/write operations.

This article uses MySQL Query requests to understand ClickHouse’s complete data reading process through call stacks.

How is it Implemented?

The entry file is at:
MySQLHandler.cpp

Handshake Protocol

  1. MySQLClient sends Greeting packet to MySQLHandler
  2. MySQLHandler replies with a Greeting-Response packet
  3. MySQLClient sends authentication packet
  4. MySQLHandler authenticates the packet and returns authentication result

MySQL Protocol implementation is in: Core/MySQLProtocol.h

Query Request

After authentication passes, normal data interaction can proceed.

  1. When MySQLClient sends a request:

    1
    mysql> SELECT * FROM system.numbers LIMIT 5;
  2. MySQLHandler call stack:

    1
    ->MySQLHandler::comQuery -> executeQuery -> pipeline->execute -> MySQLOutputFormat::consume
  3. MySQLClient receives results

In step 2, executeQuery (executeQuery.cpp) is very important.
It’s the interface between all frontend Servers and ClickHouse kernel, with the first parameter being SQL text (‘select 1’) and the second parameter being where to send the result set (socket net).

Call Stack Analysis

1
SELECT * FROM system.numbers LIMIT 5

1. Get Data Source

StorageSystemNumbers data source:

1
2
3
4
5
6
7
8
9
10
11
12
DB::StorageSystemNumbers::read(std::__1::vector<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> >, std::__1::allocator<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > > > const&, std::__1::shared_ptr<DB::StorageInMemoryMetadata const> const&, DB::SelectQueryInfo const&, DB::Context const&, DB::QueryProcessingStage::Enum, unsigned long, unsigned int) StorageSystemNumbers.cpp:135
DB::ReadFromStorageStep::ReadFromStorageStep(std::__1::shared_ptr<DB::RWLockImpl::LockHolderImpl>, std::__1::shared_ptr<DB::StorageInMemoryMetadata const>&, DB::SelectQueryOptions,
DB::InterpreterSelectQuery::executeFetchColumns(DB::QueryProcessingStage::Enum, DB::QueryPlan&, std::__1::shared_ptr<DB::PrewhereInfo> const&, std::__1::vector<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> >, std::__1::allocator<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > > > const&) memory:3028
DB::InterpreterSelectQuery::executeFetchColumns(DB::QueryProcessingStage::Enum, DB::QueryPlan&, std::__1::shared_ptr<DB::PrewhereInfo> const&, std::__1::vector<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> >, std::__1::allocator<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > > > const&) InterpreterSelectQuery.cpp:1361
DB::InterpreterSelectQuery::executeImpl(DB::QueryPlan&, std::__1::shared_ptr<DB::IBlockInputStream> const&, std::__1::optional<DB::Pipe>) InterpreterSelectQuery.cpp:791
DB::InterpreterSelectQuery::buildQueryPlan(DB::QueryPlan&) InterpreterSelectQuery.cpp:472
DB::InterpreterSelectWithUnionQuery::buildQueryPlan(DB::QueryPlan&) InterpreterSelectWithUnionQuery.cpp:183
DB::InterpreterSelectWithUnionQuery::execute() InterpreterSelectWithUnionQuery.cpp:198
DB::executeQueryImpl(const char *, const char *, DB::Context &, bool, DB::QueryProcessingStage::Enum, bool, DB::ReadBuffer *) executeQuery.cpp:385
DB::executeQuery(DB::ReadBuffer&, DB::WriteBuffer&, bool, DB::Context&, std::__1::function<void (std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&,
DB::MySQLHandler::comQuery(DB::ReadBuffer&) MySQLHandler.cpp:307
DB::MySQLHandler::run() MySQLHandler.cpp:141

The most important here is the ReadFromStorageStep function, which gets the data source pipe from different storages:

1
Pipes pipes = storage->read(required_columns, metadata_snapshot, query_info, *context, processing_stage, max_block_size, max_streams);

2. Pipeline Construction

1
2
3
4
5
6
7
8
9
10
11
12
13
DB::LimitTransform::LimitTransform(DB::Block const&, unsigned long, unsigned long, unsigned long, bool, bool, std::__1::vector<DB::SortColumnDescription, std::__1::allocator<DB::SortColumnDescription> >) LimitTransform.cpp:21
DB::LimitStep::transformPipeline(DB::QueryPipeline&) memory:2214
DB::LimitStep::transformPipeline(DB::QueryPipeline&) memory:2299
DB::LimitStep::transformPipeline(DB::QueryPipeline&) memory:3570
DB::LimitStep::transformPipeline(DB::QueryPipeline&) memory:4400
DB::LimitStep::transformPipeline(DB::QueryPipeline&) LimitStep.cpp:33
DB::ITransformingStep::updatePipeline(std::__1::vector<std::__1::unique_ptr<DB::QueryPipeline, std::__1::default_delete<DB::QueryPipeline> >, std::__1::allocator<std::__1::unique_ptr<DB::QueryPipeline, std::__1::default_delete<DB::QueryPipeline> > > >) ITransformingStep.cpp:21
DB::QueryPlan::buildQueryPipeline() QueryPlan.cpp:154
DB::InterpreterSelectWithUnionQuery::execute() InterpreterSelectWithUnionQuery.cpp:200
DB::executeQueryImpl(const char *, const char *, DB::Context &, bool, DB::QueryProcessingStage::Enum, bool, DB::ReadBuffer *) executeQuery.cpp:385
DB::executeQuery(DB::ReadBuffer&, DB::WriteBuffer&, bool, DB::Context&, std::__1::function<void (std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&)>) executeQuery.cpp:722
DB::MySQLHandler::comQuery(DB::ReadBuffer&) MySQLHandler.cpp:307
DB::MySQLHandler::run() MySQLHandler.cpp:141

3. Pipeline Execution

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
DB::LimitTransform::prepare(std::__1::vector<unsigned long, std::__1::allocator<unsigned long> > const&, std::__1::vector<unsigned long, std::__1::allocator<unsigned long> > const&) LimitTransform.cpp:67
DB::PipelineExecutor::prepareProcessor(unsigned long, unsigned long, std::__1::queue<DB::PipelineExecutor::ExecutionState*, std::__1::deque<DB::PipelineExecutor::ExecutionState*, std::__1::allocator<DB::PipelineExecutor::ExecutionState*> > >&, std::__1::unique_lock<std::__1::mutex>) PipelineExecutor.cpp:291
DB::PipelineExecutor::tryAddProcessorToStackIfUpdated(DB::PipelineExecutor::Edge&, std::__1::queue<DB::PipelineExecutor::ExecutionState*, std::__1::deque<DB::PipelineExecutor::ExecutionState*, std::__1::allocator<DB::PipelineExecutor::ExecutionState*> > >&, unsigned long) PipelineExecutor.cpp:264
DB::PipelineExecutor::prepareProcessor(unsigned long, unsigned long, std::__1::queue<DB::PipelineExecutor::ExecutionState*, std::__1::deque<DB::PipelineExecutor::ExecutionState*, std::__1::allocator<DB::PipelineExecutor::ExecutionState*> > >&, std::__1::unique_lock<std::__1::mutex>) PipelineExecutor.cpp:373
DB::PipelineExecutor::tryAddProcessorToStackIfUpdated(DB::PipelineExecutor::Edge&, std::__1::queue<DB::PipelineExecutor::ExecutionState*, std::__1::deque<DB::PipelineExecutor::ExecutionState*, std::__1::allocator<DB::PipelineExecutor::ExecutionState*> > >&, unsigned long) PipelineExecutor.cpp:264
DB::PipelineExecutor::prepareProcessor(unsigned long, unsigned long, std::__1::queue<DB::PipelineExecutor::ExecutionState*, std::__1::deque<DB::PipelineExecutor::ExecutionState*, std::__1::allocator<DB::PipelineExecutor::ExecutionState*> > >&, std::__1::unique_lock<std::__1::mutex>) PipelineExecutor.cpp:373
DB::PipelineExecutor::tryAddProcessorToStackIfUpdated(DB::PipelineExecutor::Edge&, std::__1::queue<DB::PipelineExecutor::ExecutionState*, std::__1::deque<DB::PipelineExecutor::ExecutionState*, std::__1::allocator<DB::PipelineExecutor::ExecutionState*> > >&, unsigned long) PipelineExecutor.cpp:264
DB::PipelineExecutor::prepareProcessor(unsigned long, unsigned long, std::__1::queue<DB::PipelineExecutor::ExecutionState*, std::__1::deque<DB::PipelineExecutor::ExecutionState*, std::__1::allocator<DB::PipelineExecutor::ExecutionState*> > >&, std::__1::unique_lock<std::__1::mutex>) PipelineExecutor.cpp:373
DB::PipelineExecutor::tryAddProcessorToStackIfUpdated(DB::PipelineExecutor::Edge&, std::__1::queue<DB::PipelineExecutor::ExecutionState*, std::__1::deque<DB::PipelineExecutor::ExecutionState*, std::__1::allocator<DB::PipelineExecutor::ExecutionState*> > >&, unsigned long) PipelineExecutor.cpp:264
DB::PipelineExecutor::prepareProcessor(unsigned long, unsigned long, std::__1::queue<DB::PipelineExecutor::ExecutionState*, std::__1::deque<DB::PipelineExecutor::ExecutionState*, std::__1::allocator<DB::PipelineExecutor::ExecutionState*> > >&, std::__1::unique_lock<std::__1::mutex>) PipelineExecutor.cpp:373
DB::PipelineExecutor::tryAddProcessorToStackIfUpdated(DB::PipelineExecutor::Edge&, std::__1::queue<DB::PipelineExecutor::ExecutionState*, std::__1::deque<DB::PipelineExecutor::ExecutionState*, std::__1::allocator<DB::PipelineExecutor::ExecutionState*> > >&, unsigned long) PipelineExecutor.cpp:264
DB::PipelineExecutor::prepareProcessor(unsigned long, unsigned long, std::__1::queue<DB::PipelineExecutor::ExecutionState*, std::__1::deque<DB::PipelineExecutor::ExecutionState*, std::__1::allocator<DB::PipelineExecutor::ExecutionState*> > >&, std::__1::unique_lock<std::__1::mutex>) PipelineExecutor.cpp:373
DB::PipelineExecutor::initializeExecution(unsigned long) PipelineExecutor.cpp:747
DB::PipelineExecutor::executeImpl(unsigned long) PipelineExecutor.cpp:764
DB::PipelineExecutor::execute(unsigned long) PipelineExecutor.cpp:479
DB::executeQuery(DB::ReadBuffer&, DB::WriteBuffer&, bool, DB::Context&, std::__1::function<void (std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&)>) executeQuery.cpp:833
DB::MySQLHandler::comQuery(DB::ReadBuffer&) MySQLHandler.cpp:307
DB::MySQLHandler::run() MySQLHandler.cpp:141

4. Output Execution and Sending

1
2
3
4
5
6
7
8
9
10
11
DB::MySQLOutputFormat::consume(DB::Chunk) MySQLOutputFormat.cpp:53
DB::IOutputFormat::work() IOutputFormat.cpp:62
DB::executeJob(DB::IProcessor *) PipelineExecutor.cpp:155
operator() PipelineExecutor.cpp:172
DB::PipelineExecutor::executeStepImpl(unsigned long, unsigned long, std::__1::atomic<bool>*) PipelineExecutor.cpp:630
DB::PipelineExecutor::executeSingleThread(unsigned long, unsigned long) PipelineExecutor.cpp:546
DB::PipelineExecutor::executeImpl(unsigned long) PipelineExecutor.cpp:812
DB::PipelineExecutor::execute(unsigned long) PipelineExecutor.cpp:479
DB::executeQuery(DB::ReadBuffer&, DB::WriteBuffer&, bool, DB::Context&, std::__1::function<void (std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&)>) executeQuery.cpp:800
DB::MySQLHandler::comQuery(DB::ReadBuffer&) MySQLHandler.cpp:311
DB::MySQLHandler::run() MySQLHandler.cpp:141

Summary

ClickHouse’s modularization is quite clear, like Lego blocks that can be assembled. When we execute:

1
SELECT * FROM system.numbers LIMIT 5

First, the kernel parses the SQL statement to generate AST, then gets the data source Source based on AST, pipeline.Add(Source).
Next, generates QueryPlan based on AST information, then generates corresponding Transforms based on QueryPlan, pipeline.Add(LimitTransform).
Then adds Output Sink as the data sending object, pipeline.Add(OutputSink).
Execute pipeline, and each Transformer starts working.

ClickHouse’s Transformer scheduling system is called Processor, which is also a critical module determining performance. For details, see Pipeline Processors and Scheduler.
ClickHouse is a luxury sports car with manual transmission, free to own. Cheers everyone!